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Abstract� Database transformations arise in many di�erent settings including
database integration� evolution of database systems� and implementing user views
and data	entry tools� This paper surveys approaches that have been taken to prob	
lems in these settings� assesses their strengths and weaknesses� and develops require	
ments on a formal model for specifying and implementing database transformations�

We also consider the problem of insuring the correctness of database transforma	
tions� In particular� we demonstrate that the usefulness of correctness conditions
such as information preservation is hindered by the interactions of transformations
and database constraints� and the limited expressive power of established database
constraint languages� We conclude that more general notions of correctness are
required� and that there is a need for a uniform formalism for expressing both
database transformations and constraints� and reasoning about their interactions�

Finally we introduce WOL� a declarative language for specifying and implementing
database transformations and constraints� We brie
y describe the WOL language
and its semantics� and argue that it addresses many of the requirements on a
formalism for dealing with general database transformations�

� Introduction

The need to implement transformations between distinct� heterogeneous
databases has become a major factor in information management in recent
years� Problems of reimplementing legacy systems� adapting application pro�
grams and user interfaces to schema evolution� integrating heterogeneous
databases� and merging user views or mapping between data�entry screens
and the underlying database all involve some form of transformation� The
wide variety of data models in use� including those supporting complex data
structures and object�identities� further complicate these problems�

A database transformation is a set of mappings from the instances of one or
more source database schemas to the instances of some target schema� The
schemas involved may be expressed in a variety of di�erent data�models� and
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implemented using di�erent DBMSs� Incompatibilities between the sources
and target exist at all levels � the choice of data�model� the representation of
data within a model� the data of an instance � and must be explicitly resolved
within the transformation�

Much of the existing work on transformations concentrates on the restruc�
turing of source database schemas into a target schema� either by means of
a series of simple manipulations or by a description in some abstract lan�
guage� and the mappings of the underlying instances are determined by the
restructurings of schemas� In some cases this emphasis is at the expense of
a formal treatment of the e�ect of transformations on instances� which is
stated informally or left to the intuition� However there are� in general� many
possible interpretations of a particular schema manipulation� For example� in
a data model supporting classes of objects and optional attributes of classes�
suppose we changed an attribute of an existing class from being optional to
being required� There are a number of ways that such a schema manipulation
can be re�ected on the underlying data� we could insert a default value for
the attribute where ever it is omitted� or we could simply delete any objects
from the class for which the attribute is missing�

It is clear that there may be many transformations� with di�ering semantics�
corresponding to the same schema manipulation� and that it is necessary
to be able to distinguish between them� In contrast to existing work� our
focus in this paper is therefore on how transformations e�ect the underlying
data itself� We will use the term �database transformations�� as opposed
to the more common �schema transformations�� in order to emphasize this
distinction�

Implementations of database transformations fall into two camps� those in
which the data is actually transformed into a format compatible with the
target schema and then stored in a target database� and those in which the
data remains stored in the source databases and queries against the target
schema are translated into queries against the source databases� The 	rst of
these approaches can be thought of as performing a one�time bulk transfor�

mation� while the second approach evaluates transformations in a call�by�need
manner�

For example� the most common approach adopted within federated database
systems 
�� is call�by�need 
��������� This approach has the advantage that
the source databases retain their autonomy� and updates to the various
source databases are automatically re�ected in the target database� How�
ever� in cases where accessing the component databases is costly and the
databases are not frequently updated� actually merging the data into a local
uni	ed database may be more e�cient� Furthermore� maintaining integrity
constraints over a federated database system is a much more di�cult task
than checking data integrity for a single merged database 
������ As a result�
the approach of performing a one�time bulk transformation is taken in 
���



Somework on schema evolution also advocates implementing transformations
in a call�by�need manner 
�������� In this case multiple versions of a schema
are maintained� and data is stored using the version for which it was originally
entered� The advantage of the approach is that major database reorganiza�
tions can be avoided� and applications implemented for an earlier version of
a schema can still be used� However� for applications built on old versions
of a schema to be applied to new data� reverse transformations must also be
implemented� Furthermore the cost of maintaining multiple views and com�
puting compounded transformations may be prohibitively expensive� These
problems are especially signi	cant when schema evolutions are frequent� and
it is not possible a priori to tell when old views or data cease to be relevant�
Consequently some practical work on implementing schema evolutions has
been based on performing bulk transformations of data 
���

It is clear that the implementationmethod appropriate for a particular trans�
formation will depend on the application and on the databases involved�
However� the semantics of a transformation should be independent of the
implementation method chosen as well as of the application area itself� Un�
fortunately� for much of the work in the area of database transformations
this is not the case� primarily due to the fact that there is no independent
semantics for the transformation� A focus of this paper is therefore to develop
a semantics of database transformations� and examine various metrics for the
�goodness� or �correctness� of such transformations�

We start in the next section by giving an informal example of a database
transformation as it might arise within heterogeneous database integration�
and surveying approaches that have been taken within this domain� The
example is used to illustrate that while many of the ideas in these approaches
are useful� none of them capture all necessary structural manipulations and
that there is therefore a need for a more general and �exible formalism for
expressing such transformations�

Section � formalizes the example by presenting a data model which gives a
precise semantics to a database schema� instances and keys� The model is
used in section � to examine the notion of information capacity preserving
transformations� We argue that while this is an appealing �correctness� met�
ric for database transformations� it is not always useful because it does not
capture intuitively meaningful transformations� and fails to take into account
implicit constraints on the databases being transformed� We conclude that
there is a need to express and test more general correctness conditions� and to
derive constraints on the databases being transformed from such conditions�

Section � presents a declarative language for expressing database transforma�
tions and constraints calledWOL �Well�founded Object Language�� We show
that WOL is not only su�cient for expressing the transformations occuring
in existing work� but that it is more expressive than existing transformation
languages for the data�models being considered� WOL can also be used to



express the constraints on individual databases and between databases neces�
sary to ensure correctness of transformations� hence 	lling a signi	cant need
in the 	eld of database transformations�

� Transformations in Database Integration

In this section we will look at some examples of database transformations�
particularly in the context of database integration� and show how some parts
of these examples are addressed by existing work� while others require more
general transformation techniques� The context of database integration is
particularly appropriate since much of the most signi	cant work in database
transformations stems from this 	eld� In contrast� transformations proposed
in say the area of schema evolution are comparatively simple 
��������������
normally being based on a single model and a small set of basic schema
modi	cations� such as introducing specialization and generalization classes�
adding or removing attributes� and so on� It is not clear whether the reason
for this is historical� since database integration became a signi	cant problem
earlier in terms of the need for formal tools and techniques� or because the
transformations involved in database integration are inherently more di�cult
than those arising in other areas�

��� Database Integration� An Example

The objective of database integration is to make data distributed over a
number of distinct� heterogeneous databases accessible via a single database
interface� either by constructing a �virtual� view of the component databases
to give them the appearance of a single database� or by actually mapping
data from the component databases into a single uni	ed database� In either
case� the problem from the perspective of database transformations is how
to transform data from the various formats and structures in which it is
represented in the component databases into a form compatible with the
integrated database schema�

Example �� Figure � shows the schemas of two databases representing US
Cities and States� and European Cities and Countries respectively� The graph�
ical notation used here is inspired by 
�� the boxes represent classes which are
	nite sets of objects� the arrows represent attributes� or functions on classes�
and str and Bool represent sets of base values� An instance of such a schema
consists of an assignment of 	nite sets of objects to each class� and of func�
tions on these sets to each attribute� The details of this model will be made
precise in section ��

The 	rst schema has two classes� City and State� The City class has two
attributes� name� representing the name of a city� and state� which points to
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Fig� �� Schemas for US Cities and European Cities databases

the state to which a city belongs� The State class also has two attributes�
representing its name and its capital city�

The second schema also has two classes� this timeCity and Country� The City
class has attributes representing its name and its country� but in addition has
a Boolean�valued attribute capital which represents whether or not it is the
capital city of a country� The Country class has attributes representing its
name� currency and the language spoken�

Suppose we wanted to combine these two databases into a single database
containing informationabout both US and European cities� A suitable schema
is shown in 	gure �� where the �plus� node indicates a variant� Here the City
classes from both the source databases are mapped to a single class City in
the target database� The state and country attributes of the City classes are
mapped to a single attribute place which take a value that is either a State
or a Country� depending on whether the City is a US or a European city�
A more di�cult mapping is between the representations of capital cities of
European countries� Instead of representing whether a city is a capital or not
by means of a Boolean attribute� the Country class in our target database has
an attribute capital which points to the capital city of a country� To resolve
this di�erence in representation a straightforward embedding of data will not
be su�cient� we will need to do some more sophisticated structural transfor�



mations on the data� Further constraints on the source database� ensuring
that each Country has exactly one City for which the is capital attribute is
true� are necessary in order for the transformation to be well de	ned� �The
interaction between constraints and transformations will be explored in sec�
tion �����
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Fig� �� An integrated schema of European and US Cities

The problem of database integration may therefore be seen as forming an in�

tegrated schema� which represents the relevant information in the component
source databases� together with transformations from the source databases
to this integrated schema�

��� Resolving Structural Con�icts in Database Integration

In 
� Batini et al� noted that schema integration techniques generally have
two phases� con�ict resolution and merging or unioning of schemas� Although
schema merging has received a great deal of attention� it is only a small �and
usually the last� step in the process of database integration� The more sig�
ni	cant part of the process is manipulating the component databases so that
they represent data in a compatible way� In order to do this it is neces�
sary to resolve naming con�icts between the schemas �both homonyms and
synonyms�� and also to perform structural manipulations on data to resolve
con�icts in the way data is represented� The structural manipulations re�
quired are usually computationally simple� and do not normally involve any
unbounded computation �iteration or recursion�� An example of such a struc�
tural manipulation was given by how the capital attribute was represented
in the European Cities schema�

The order in which the con�ict resolution and schema merging phases are
carried out varies between di�erent database integration methods� For ex�
ample� in Motro
�� component schemas are 	rst unioned to form disjoint



components of a �superview� schema� and the superview is then manipulated
in order to combine concepts and resolve con�icts between the component
schemas� In contrast� 
������� assume that con�icts between schemas are re�
solved prior to the schema merging process� and 
� interleaves the two parts
of this process�

Schema of European Cities and Countries
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Fig� �� A modi�ed schema for a European cities and countries database

Example �� Returning to example �� it is necessary to perform a structural
modi	cation on the database of European Cities and Countries to replace the
Boolean is capital attribute of the City class with a capital attribute of class
Country going to the class City� This yields an intermediate database with
the schema shown in 	gure �� It is then necessary to associate the classes and
attributes of the two source databases� so that the City classes and name

attributes� and also the state and country attributes� are associated� and
the remainder of the transformation could be implemented by means of an
automated schema�merging tool�

There are two basic approaches to systems for implementing transformations
to resolve such structural con�icts� using a small set of simple transformations
or heuristics that can be applied in series 
����������� or using some high�level
language to describe the transformation 
����� Examples of such approaches
will be given in section ����

The advantage of using a small set of pre�de	ned atomic transformations is
that they are simple to reason about and prove correctness for� For instance�
one could prove that each transformation was information preserving 
������
or if necessary associate constraints with each transformation in order for it to
be information capacity preserving� and deduce that a series of applications
of the transformations was information preserving� The disadvantage of this
approach is that the expressivity of such a family of transformations is inher�
ently limited� For example the family of transformations proposed in 
�� are



insu�cient to describe the transformation between an attribute of a class and
a binary relation between classes� that is� one cannot transform from a class
Person with an attribute spouse of class Person to a binary relation Marriage

on the Person class� Although it might be easy to extend the family of atomic
transformations to allow this case� which is a common source of incompatibil�
ity between databases� there would still be other important transformations
that could not be expressed� The restructuring described in example � also
can not be expressed using any of the families of transformations mentioned
above�

A potentially much more �exible approach is to use some high�level language
for expressing structural transformations on data� However programming and
checking a transformation in such a language is a more laborious task� Fur�
ther� if it is necessary to ensure that a transformation is information preserv�
ing then additional constraints may be needed on the source databases� and
in general these constraints will not be expressible in any standard constraint
language� This will be taken up again in more detail in section �� We there�
fore believe that there is a need for a declarative language for expressing
such transformations and constraints� which allows one to formally reason
about the interaction between transformations and constraints and which is
su�ciently simple to allow transformations to be programmed easily� Such a
language will be presented in section ��

��� Schema Integration Techniques

In 
� Batini et al� survey existing work on schema integration� They observe
that schema integration arises from two tasks� database integration� which we
have already discussed� and integration of user views� which occurs during
the design phase of a database when constructing a schema that satis	es the
individual needs of each of a set of user groups� However they fail to note
that these two kinds of schema integration are fundamentally di�erent� The
reason for this can be seen by considering the direction in which data is trans�
formed in each case� For database integration� instances of each of the source
databases are transformed into instances of the merged schema� On the other
hand� when integrating multiple user views instances of the merged schema
must be transformed back into instances of the user views �see 	gure ��� The
intuition is that when integrating user views all of the underlying information
must be represented� no objects or attributes can be missing since some user
may want the information� However� when integrating pre�existing databases
the best that can be hoped for is that attributes of objects that are present
in every underlying database will de	nitely be present in the integration�
attributes that are present in some but not all of the underlying databases
may be absent in the integration� In 
� it was observed that integrating user
views corresponds to the �least upper bound� of the component schemas in
some information ordering on schemas� while in database integration what



is required is the �greatest lower bound� of the component schemas in some
information ordering on schemas� A good schema�integration method should
therefore take account of its intended purpose and include a semantics for
the underlying transformations of instances�
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Fig� �� Data transformations in applications of schema integration

In this section we will concentrate on methodologies intended for database�
integration� and look at some representative examples of the various ap�
proaches to this problem�

Example �� Continuing with our example of database integration� we can
use the technique of Motro
�� to integrate the Cities and States database of
	gure � with the restructured Cities and Countries database of 	gure ��� The
process is illustrated in 	gure �� First� a disjoint union of the two schemas
is formed �a�� and then a series of �macro� transformations are applied to
form the desired integrated schema�� The transformations applied include
introducing generalizations �b�� deriving new attributes as compositions or
combinations of existing attributes �c�� and combining classes �d��

In this particular integration method� the semantics of the transformations
are strongly linked to the implementation method� The intention is that the
integrated database be implemented as a view of the component databases�

� Recall that this methodology is not expressive enough to express the transfor	
mation from the Cities and Countries database of �gure � to that of �gure �

� In the model of ���� generalizations are represented by classes with isa edges�
though for consistency we present this example using variants instead�
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Fig� �� A schema integration using the methodology of Motro

and that queries against the integrated database be executed by translating
them into queries against the component databases and then combining the
results� The semantics of the individual transformations are given by their
e�ects on queries� However the lack of any independent characterization of
their semantics makes it di�cult to reason about or prove properties of the
transformations� or to use any alternative implementation of the methodol�
ogy�

A more expressive and �exible way of specifying transformations is to use
some sort of high�level transformation language� An example of such an ap�
proach is the system of rewrite rules for nested relational structures proposed
by Abiteboul and Hull in 
�� The model of 
� is purely value�based� there is
no concept of object identity� Consequently it is necessary to use some notion
of keys in order to represent recursive structures such as those of 	gure �� and
to reference values in one table or class from values in another �see section ��

A number of other approaches to schema merging 
������� take component
schemas � such as those of 	gures � and � � together with constraints relat�
ing the elements of the schemas � for example saying that the City classes
of the two schemas and the state and country attributes correspond � and
apply an algorithm which returns a uni	ed schema� In these approaches the
transformations are generally simple embeddings of data and type coercions�



For most schema integration methodologies the outcome is dependent on
the order in which schemas are integrated� that is� they are not associative�
Intuitively this should not be the case� since the integration of a set of schemas
should depend only on the schemas and the relations between them� the
semantics of the integration should be independent of the algorithm used�
As a consequence of this non�associativity� a schema integration method will
specify an ordering in which schema integrations take place� such as a binary
tree or ladder� or all at once� and possibly a way of ordering the particular
schemas� For example 
� states that schemas should be ranked and then
integrated in order of relevance� although no justi	cation for this ordering is
given� why shouldn�t it be appropriate to integrate the most relevant schemas
last� or in the middle� rather than 	rst� Further enforcing such an ordering
is not acceptable in a system in which new databases may be added to the
system at a later date� if a database is added to an established federation
the result should be the same as if the database had been present in the
federation at the outset�

In 
� it was shown that the non�associativity of schema integration method�
ologies is due to new �implicit� nodes or classes that are introduced during
the merging process� The variant of the State and Country classes in exam�
ple � is an example of such an implicit node� By taking account of these
implicit nodes and how they are introduced� an independent semantics can
be given to the merge of a set of schemas and the relations between them�
and an associative schema merging algorithm de	ned 
��

��� Merging Data

Once transformed into a suitable form� data from the component databases
must be merged� In a value based model without additional constraints� this is
simply a matter of taking the union of the relevant data� However� when more
complex data models are used� such as those supporting object identity or
inter�database constraints� this task becomes more di�cult since it necessary
to resolve con�icts and equate objects arising from di�erent databases 
������

This problem is not apparent in our running example because the databases of
Cities and States and Cities and Countries represent disjoint sets of objects�
However suppose we were also interested in integrating a third database in�
cluding international information about Cities and Countries with the schema
shown in 	gure �� This schema has three classes� City� Country and Region�
Each City is in a Region� and each Country has a set �indicated by a �star�
node� of Regions� The exact meaning of Region depends on the country to
which it belongs� For example� in the United States� Regions would cor�
respond to States �or Districts�� while in Great Britain Regions might be
counties� This database might contain data which overlaps with the other
two databases� For example there might be objects representing the city
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Fig� �� A schema for a international database of Cities and Countries

Philadelphia in both the International Cities and Countries database and in
the Cities and States database� in which case it would be necessary to map
both objects to the same object in the integrated database� Equally there
might be objects representing the same City or Country in both the Interna�
tional and the European Cities databases� which would need to be combined
in the target database�

An important point to note here is that transformations from the various
source databases to an integrated database are not independent� it is not
su�cient to merely write a transformation from each individual database to
the target database� Instead� we must write a transformation that takes a set

of database instances� one for each source schema� and transforms them into
a target instance�

The problem of resolving object identity over multiple databases with con�
straints is examined in 
��������� 
�� gives an analysis of the more general
problem of how to compare and equate object identities� and concludes by
recommending a system of external keys for identifying object identities�

� Data Models for Database Transformations

Works on transformations between heterogeneous databases are usually based
around some su�ciently expressive data�model� or meta�data�model� which
naturally subsumes the models used for the component databases� Various
data models have been used� ranging from relational and extended entity�
relationship models to semantic and object�oriented models� The main re�
quirements on such a meta�data�model are that the models of component
databases being considered should be embeddable in it in a natural way� and
that it be su�ciently simple and expressive to allow data to be represented in



multiple ways� so that con�icts between alternative representations of data
can be resolved� In 
�� the requirements on a model for transforming hetero�
geneous databases are examined� and the authors conclude that a model sup�
porting complex data�structures �sets� records and variants�� object�identity
and specialization and generalization relations between object classes is de�
sirable�
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Fig� �� A transformation between recursive data structures

Some notion of referencing� such as object�identities or keys is essential in
order to represent recursive data�structures such as those of 	gures � and ��
However� in order to transform databases involving such recursive structures�
it is also necessary to have a notion of extents or classes in which all objects
of a database must occur� To see this� let us look at another example� namely
the transformation between the two schemas shown in 	gure �� Suppose we
considered the 	rst schema merely to de	ne a recursive type PersonS� A value
of type PersonS would be a record with attributes name� sex and children�
such that the children attribute would be a set of records of type PersonS�
In order to transform a source database consisting of a set of values of type
PersonS� we would have to recursively apply a restructuring transformation
to each set of children of each person in the database� This recursion could
be arbitrarily deeply nested� and� in the case of cyclic data� non�terminating�

Fortunately the source schema of 	gure � conveys some important informa�
tion in addition to describing a recursive type� namely it tells us that our
database consists of a �nite extent or class PersonS� and that all the people
represented in the database are reachable as members of this extent� In partic�
ular it tells us that� if X is an object in the class PersonS and Y � X�children
�Y is a child of X�� then Y is also in the class PersonS� Consequently� when
transforming the database� we can iterate our transformation over the el�
ements of the class PersonS� and do not have to worry about recursively
applying the transformation to the children of a person�



Note that in performing a transformation� it may be necessary to create
and reference an object�identity before it has a value associated with it� In
this example� if we perform the transformation by iterating over the class
PersonS� it may be necessary to create an object in the target class PersonT�
with father and mother attributes both set to some person� before the ob�
jects corresponding to the parents of the person being transformed have been
encountered in the class PersonS� In this case it is necessary to create and
reference object identities for the two parents� even though the corresponding
values have not yet been formed� Keys provide a mechanism for such early
creation and referencing of object identities�

Keeping these requirements in mind� we now present the data�model forWOL

so that it can be used for examples throughout the remainder of this paper�
It is presented in three stages� First we present schemas� then instances� and
then keyed�schemas and instances�

��� The WOL Data�Model

The data�model for WOL supports object�identities� classes and complex
data�structures� However we prefer to view specialization and generalization
relations as particular examples of constraints which can be expressed sepa�
rately using a general constraint language� The model is basically the same
as that of 
� and is equivalent to the models implemented in various object�
oriented databases 
�� except for the omission of direct support for inheri�
tance� It is also necessary to have some mechanism to create and reference
object�identities� Since object identities themselves are generally considered
to be abstract values� which are not directly visible� some value�based handle
on them is desirable� We follow 
�� in using surrogate keys for this purpose�

We assume a 	xed set of base types� B� ranged over by b� b�� � � �� and a countable
set of attribute labels� A� ranged over by a� a�� � � �� together with some 	xed
arbitrary ordering on A� Our de	nition of types will be relative to a particular
	nite set of classes�

Assume a 	nite set C of classes ranged over by C�C�� � � �� The types over C�
ranged over by �� � �� � � �� consist of base types� b� class types C� where C � C�
set types fbg and fCg for each base type b and class type C� record types

�a� � ��� � � � � ak � �k�� where a�� � � � � ak are arranged according to the ordering
on A� and variant types hja� � ��� � � � � ak � �kji� We write TypesC for the set
of types over C� The restriction on set types� that they be either sets of
base or class type� can be relaxed and replaced by some more general but
complicated constraints on set types and on expressions dealing with sets� as
in 
��� A restriction of this nature is necessary in order to be able to navigate
and identify elements in nested sets� We need to avoid types such as sets of
sets �ff�gg�� particularly in the target database of a transformation� where



sets may only be partially instantiated as the transformation progresses� and
therefore cannot be compared or equated�

A schema� S� consists of a 	nite set of classes� C� and for each class C � C
a corresponding type �C � TypesC where �C is not a class type�

For each base type b we assume a countable set Db corresponding to the
domain of b� Suppose we have a schema S with classes C� and for each C � C
we have a disjoint set �C of object identities of class C� The set of values as�
sociated with a particular type are dependent on the object identities present
in an instance� For each type � � TypesC we de	ne a set 

� �C as in 	gure ��
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C� � � � � � �fakg � ���k���
C�

Fig� �� The semantic operator on types

An instance� I� of a database schema S consists of a family of sets of object
identities� �C � and for each class C � C� a mapping VC � �C � 

�C�C� We
write Inst�S� for the set of instances of schema S�

Example �� The 	rst schema illustrated in example � has two classes repre�
senting Cities and States� with each city having a name and a state� and each
state having a name and a capital city� The set of classes for the schema is
therefore CA � fCity

A
� StateAg and the associated types are

�CityA
A

� �name � str� state � StateA�

�StateA
A

� �name � str� capital � CityA�

The second schema has classes CE � fCityE �CountryEg and associated types

�CityE
E

� �name � str� is capital � Bool� country � CountryE�

�CountryE
E

� �name � str� language � str� currency � str�

An instance of the second schema would consist of two sets of object identities�
such as

�CityE � fLondon�Manchester�Paris�Berlin�Bonng

�CountryE � fUK�FR�GMg



and functions VCity on �City and VState on �State� such as

VCityE �London� � �name �� �London�� country �� UK� is capital �� tt�

VCityE �Manchester� � �name �� �Manchester�� country �� UK�

is capital �� ��

VCityE �Paris� � �name �� �Paris�� country �� FR� is capital �� tt�

VCountryE �UK� � �name �� �United Kingdom�� language �� �English��

currency �� �sterling��

VCountryE �FR� � �name �� �France�� language �� �French��

currency �� �franc��

and so on�

A key speci�cation� K� for a schema S with classes C consists of a type
�C for each C � C� where �C contains no class types� and for any instance
I � Inst�S�� a family of functions KC

I
� �C � 

�C for each C � C��

An instance I of schema S is said to satisfy a key speci	cation K on S i� for
each class C � C and any o� o� � �C � if KC

I
�o� � KC

I
�o�� then o � o��

A keyed schema consists of a schema S� and a key speci	cation K on S� An
instance of a keyed schema �S�K� is an instance I of S such that I satis	es
K� We write Inst�S�K� for the instances of �S�K��

In general we will use S� T � � � � to range over both keyed and un�keyed
schemas� and will specify either a keyed or un�keyed schema when we are
interested exclusively in one or the other�

Example �� For the European Cities and Countries schema de	ned in exam�
ple � we might expect each Country to be uniquely determined by its name�
and each City to be uniquely determined by its name and the name of its
country �two Countries might both contain Cities with the same name�� The
key speci	cation for this schema might have types

�CountryE � str

�CityE � �name � str� country name � str�

and functions de	ned by

KCountryE
I

� �x � x�name

KCityE
I

� �x � �name � x�name� country name � x�name�name�

where the notation x�a means if x � �C then take the value VC�x�� which
must be of record type� and project out the attribute a�

� If � is a type which does not involve any class types� then the value of ��� ���C is
independent of the choice of object identities� �C� In this case we write ��� �� for
the set ��� ���C for an arbitrary choice of �C�



��� Well�de�ned Key�Speci�cations

As we remarked earlier� object�identities are generally taken to be abstract
entities that are not directly visible in a database� In practice they are fre�
quently generated as they are needed by a DBMS� Consequently we would
like the meaning of a database instance to be independent of the choice of
object�identities in the instance� or the order in which they were generated�
and to depend only on the data represented by the instance� In particular�
if two instances di�er only in their choice of object identities� we would like
to consider them to be the same� and to ensure that any queries or opera�
tions on those two instances give equivalent results� We de	ne the notion of
isomorphism to represent when two instances di�er only in their choice of
object�identities�

Given two instances of an unkeyed schema S� say I and I�� with families
of object identities �C and ��C respectively� and a family of functions fC �
�C � ��C � for C � C� we can extend fC to functions on general types
f� � 

� �C � 

� ��C� so that fb is the identity on Db for each base type b�
and f� is de	ned in the obvious manner for each higher type � �

An isomorphism from instance I to instance I�� consists of a family of bijective
functions fC � �C � ��C such that for each class C � C and each o � �C �

V�C�fC �o�� � f�
C

�VC �o��� We say instances I and I� are isomorphic and
write I �� I� i� there is an isomorphism fC from I to I��

A key speci	cation K on schema S is said to be well�de�ned if for any two
instances I and I� of S and isomorphism fC from I to I �� if I satis	es K then
so does I�� and further� for any class C � C and o � �C � KC

I
�o� � KC

I��fC �o���
Intuitively a key�speci	cation is well�de	ned if it is not dependent on the
particular choice of object identi	ers in an instance�

For the remainder we will assume that any key speci	cations are well�de	ned�

� Information Dominance in Transformations

One of the important questions of database systems is that of data�relativism�
or when one schema or data�structure can represent the same data as another�
From the perspective of database transformations this can be thought of
as asking when there is a transformation from instances of one schema to
another such that all the information in the source database is preserved by
the transformation� Such a transformation would be said to be information

preserving�

There are a number of situations when dealing with database transformations
where we might want to ensure that a transformation is information preserv�
ing� For example when performing a schema evolution� we might want to



ensure that none the information stored in the initial database is lost in the
evolved database� or when integrating databases� we might wish to ensure
that all the information stored in one of the component databases is re�ected
in the integrated database�

Example �� For the schema integration described in example � the transfor�
mation from the database of US Cities and States to the schema of 	gure �
is information preserving� in that all the information stored in an instance
of the 	rst schema will be re�ected in the transformed instance� Equally the
transformation from the restructured European Cities and Countries schema
of 	gure � to the schema of 	gure � is information preserving�

However the transformation from the 	rst European Cities and Countries
schema in 	gure � to the restructured schema of 	gure �� and hence to the
schema of 	gure �� is not information preserving� This is because the trans�
formation to the restructured schema assumes that� for each Country in the
original schema� there is exactly one City of that Country with its is capital
attribute set to True� However the original schema allows a country to have
multiple capitals� there may be many Cities with their is capital attribute set
to True� in which case the transformation would not be de	ned� If we were
able to associate an additional constraint with European Cities and Countries
schema of 	gure � stating that each there can be at most one capital City in
each Country� then the transformation would be information preserving� and
we could say that the schema of 	gure � dominates both of the schemas of
	gure ��

In section ��� we will brie�y describe the notions of information dominance

de	ned in 
��� and see how they can be related to transformations using the
data model of section �� In section ��� we consider the recent work of Miller
in 
����� which studies various applications of database transformations� and
the need for transformations to be information preserving in these situations�

��� Hull	s hierarchy of information dominance measures

In 
�� Hull de	ned four progressively more restrictive notions of information
dominance between schemas� each determined by some reversible transforma�
tion between the schemas subject to various restrictions� Although 
�� dealt
only with simply keyed �at�relational schemas� the de	nitions and some of
the results can be easily generalized to the more general model used here�

Given two schemas� S and T � a transformation from S to T is a partial map
� from instances of S to instances of T � � � Inst�S� � Inst�T �� Intuitively the
transformation is information preserving i� there is a second transformation
from T back to S� say � such that � recovers the instance of S� That is�
for any I � Inst�S�� I �� �� � ���I�� �Note that we are concerned here



with transformations which preserve instances up to isomorphism� since the
particular choice of object identities is immaterial�� In such a situation we
say that T dominates S via ��� ���

A problem with this notion is that the transformations � and � may be arbi�
trary mathematical functions� and will not necessarily provide a semantically
meaningful interpretation of the instances of S in terms of the instances of
T � In 
�� a series of progressively more restrictive notions of information

dominance are de	ned by imposing various restrictions on the transforma�
tions � and � that may be used to implement a dominance relation� This
series ends with the notion of calculus dominance� T is said to dominate

S calculously i� there are expressions in some 	xed calculus representing
transformations � and � such that T dominates S via ��� ���

An important conclusion of 
��� however� is that none of these criteria capture
an adequate notion of semantic dominance� that is� whether there is a seman�
tically meaningful interpretation of instances of one schema as instances of
another� Consequently the various concepts of information dominance can be
used in order to test whether semantic dominance between schemas is plau�
sible� or to verify that a proposed transformation is information preserving�
but the task of 	nding a semantically meaningful transformation still requires
a knowledge and understanding of the databases involved�

Another signi	cant problemwith this analysis is that it assumes that all possi�
ble instances of a source schema should be re�ected by distinct corresponding
instances of a target schema� However� in practice only a small number of
instances of a source schema may actually correspond to real world data sets�
That is� there may be implicit constraints on the source database which are
not included in the source schema� either because they are not expressible
in the data�model being used or simply because they were forgotten or not
anticipated at the time of initial schema design� An alternative approach� pur�
sued in 
��� is to attempt to de	ne information preserving transformations
and valid schemas with respect to some underlying 	universe of discourse
�
However such characterizations are impossible or impractical to represent
and verify in practice�

��� Information Capacity and Constraints

In 
����� Miller et al� analyse the information requirements that need to
be imposed on transformations in various applications� The restrictions on
transformations that they consider are somewhat simpler than those of 
�� in
that they examine only whether transformations are injective �one�to�one� or
surjective �onto� mappings on the underlying sets of instances� For example
they claim that if a transformation is to be used to view and query an entire
source database then it must be a total injective function� while if a database
is to be updated via a view then the transformation to the view must also



be surjective� Having derived necessary conditions for various applications
of transformations� they then go on to evaluate existing work on database
integration and translations in the light of these conditions�

An important observation in 
�� is that database transformations can fail
to be information capacity preserving� not because there is anything wrong
with the de	nition of the transformations themselves� but because certain
constraints which hold on the source database are not expressed in the source
database schema� However the full signi	cance of this observation is not prop�
erly appreciated� in fact it is frequently the case that the constraints that must
be taken into account in order to validate a transformation have not merely
been omitted from the source schema� but are not expressible in any standard
constraint language�

unitunit

female

spouse

sex

str

Person

Pre-evolution Schema

male

name

Marriage

Male Female

name name

str str

husband wife

Evolved Schema

Fig� 	� An example schema evolution

Example �� Consider the schema evolution illustrated in 	gure �� The 	rst
schema has only one class� Person� with attributes representing a person�s
name� sex �a variant of male and female� and spouse� In our second �evolved�
schema the Person class has been split into two distinct classes� Male and
Female� perhaps because we wished to start storing some di�erent infor�
mation for men and women� Further the spouse attribute is replaced by a
new class�Marriage� perhaps because we wished to start recording additional
information such as dates of marriages� or allow un�married people to be
represented in the database�

It seems clear that there is a meaningful transformation from instances of the
	rst database to instances of the second� The transformation can be described



by the followingWOL program�

X �Male� X�name � N �� Y � Person� Y�name � N� Y�sex � insmale���
X � Female� X�name � N

�� Y � Person� Y�name � N� Y�sex � insfemale���
M �Marriage� M�husband � X� M�wife � Y

�� X �Male� Y � Female� Z � Person� W � Person�
X�name � Z�name� Y�name � W�name� W � Z�spouse�

where �Y�sex � insmale��� indicates that the sex is a male variant� details of
WOL will be given in the next section� Although this transformation intu�
itively appears to preserve the information of the 	rst database� in practice
it is not information preserving� The reason is that there are instances of
the spouse attribute that are allowed by the 	rst schema that will not be re�
�ected by the second schema� In particular the 	rst schema does not require
that the spouse attribute of a man goes to a woman� or that for each spouse

attribute in one direction there is a corresponding spouse attribute going the
other way� To assert these things we would need to augment the 	rst schema
with additional constraints� such as�

X�sex � insmale�� �� Y � Person� Y�sex � insfemale��� X � Y�spouse�
Y�sex � insfemale�� �� X � Person� X�sex � insmale��� Y � X�spouse�
Y � X�spouse �� Y � Person� X � Y�spouse�

We can then show that the transformation is information preserving on those
instances of the 	rst schema that satisfy these constraints� Notice however�
that these constraints are very general� and deal with values at the instance
level of the database� rather than just being expressible at the schema level�
They could not be expressed with the standard constraint languages asso�
ciated with most data�models �functional dependencies� inclusion dependen�
cies� cardinality constraints and so on��

This highlights one of the basic problems with information capacity analysis
of transformations� Such an analysis assumes that schemas give a complete
description of the set of possible instances of a database� In practice schemas
are seldom complete� either because certain constraints were forgotten or were
not known at the time of schema design� or because the data�model being
used simply isn�t su�ciently expressive� When dealing with schema evolu�
tions� where information capacity preserving transformations are normally
required� it is frequently the case that the transformation implementing a
schema evolution appears to discard information� while in fact this is be�
cause the new schema is a better 	t for the data� expressing and taking
advantage of various constraints that have become apparent since the initial
schema design�

Further� when dealing with transformations involving multiple source
databases� even if the transformations from individual source databases to a



target database are information preserving� it is unlikely that the transfor�
mations will be jointly information preserving� This is in part due to the fact
that the source databases may represent overlapping information� and inter�
database constraints are necessary to ensure that the individual databases
do not contain con�icting information� It may also be due to the fact that
information describing the source of a particular item of data may be lost�

An additional limitation of the information capacity analysis of transforma�
tions is that it is very much an all�or�nothing property� and does not help
us to establish other less restrictive correctness criteria on transformations�
When dealing with database integration� we might only be interested in a
small part of the information stored in one of the source databases� but wish
to ensure that the information in this subpart of the database is preserved by
the transformation� For example� we might be integrating our database of US
cities and states with a database of European cities or towns and countries�
and only be interested in those cities or towns with a population greater than
a hundred thousand� However we would still like to ensure that our transfor�
mation does not lose any information about European cities and towns with
population greater than one hundred thousand�

It therefore seems that a more general and problem speci	c correctness cri�
teria for transformations is needed� such as relative information capacity� In
addition� a formalism in which transformations and constraints can be jointly
be expressed is needed in which to test these more general correctness cri�
teria� As a 	rst step in this direction we present the the language WOL�
which provides a uniform framework for specifying transformations as well
as constraints�

� The WOL Language

WOL is a declarative language for specifying and implementing database
transformations and constraints� It is based on the data�model of section ��
and can therefore deal with databases involving object�identity and recursive
data�structures as well as complex and arbitrarily nested data�structures� Due
to space limitations� we will omit or simplify certain details in the de	nitions
and semantics of WOL� Full details can be found in 
���

The previous sections have shown that there are important interactions be�
tween transformations and the constraints imposed on databases� constraints
can play a part in determining a transformation� and also transformations can
imply constraints on their source and target databases� Although most data�
models support some speci	c kinds of constraints� in general it is a rather
ad hoc collection� included because of their utility in the particular examples
that the designer of the system had in mind rather than on any sound the�
oretical basis� For example� relational databases will often support keys and



sometimes functional and inclusion dependencies 
��� while semantic mod�
els might incorporate various kinds of cardinality constraints and inheritance

������ The constraints that occur when dealing with transformations often
fall outside such predetermined classes� further it is di�cult to anticipate
the kinds of constraints that will arise� We therefore propose augmenting a
simple data�model with a general formalism for expressing constraints� such
that the formalism makes it easy to reason about the interaction between
transformations and constraints�

Example �� For example� in our Cities and States database of example �� we
would want to impose a constraint that the capital City of a State is in the
State of which it is the capital� We can express this as

X�state � Y �� Y � StateA� X � Y�capital

This can be read as �if Y is in class State and X is the capital of Y � then Y is
the state ofX�� Suppose also that our States and Cities each had an attribute
population and we wanted to impose a constraint that the population of a
City was less than the population of the State in which it resides� We could
express this as

X�population � Y�population�� X � CityA� Y � X�state�

Such a constraint cannot be expressed in the constraint languages associated
with most data models�

We can also use constraints to express how the keys of a schema are derived�

X � MkCityA�name � N� state name � S�
�� X � CityA� N � X�name� S � X�state�name�

This constraint says that the key of an object of class City is a tuple built
out of the name of the city� and the name of its state� Such constraints are
important in allowing us to identify objects in transformations�

WOL is based on Horn clause logic expressions� using a small number of sim�
ple predicates and primitive constructors� However it is su�cient to express
a large family of constraints including those commonly found in established
data�models� In fact the only kinds of constraints which occur in established
data�models but can not easily be expressed in WOL are 	nite cardinality
constraints� these are constraints that might state� for example� that a cer�
tain set�valued attribute has cardinality between � and �� Though it would
be possible to extend WOL with operators to express such constraints� we
have omitted them since they are of little theoretical interest and it is not
clear that they are of any great practical signi	cance�

The language WOL can also be used to express constraints that span multi�
ple databases� and� in particular� can be used to specify transformations� A



transformation speci�cation may viewed as a collection of constraints stating
how data in a target database arises from data stored in a number of source
databases� In general however there may be any number of target database
instances satisfying a particular set of constraints for a particular collection of
source instances� It is therefore necessary to restrict our attention to complete

transformation speci	cations� such that for any collection of source database
instances if there is a target instance satisfying the transformation speci	ca�
tion then there is a unique smallest such target instance�

Possibly the closest existing work to WOL are the structural manipulations
of Abiteboul and Hull 
� described in section �� The rewrite rules in 
�
have a similar feel to the Horn clauses of WOL but are based on pattern
matching against complex data�structures� allowing for arbitrarily nested set�
record and variant type constructors� WOL gains some expressivity over the
language of 
� by the inclusion of more general and varied predicates �such
as not�equal and not�in�� though we have not included tests for cardinality
of sets in WOL� The main contributions of WOL however lie in its ability
to deal with object�identity and hence recursive data�structures� and in the
uniform treatment of transformation rules and constraints�

The language of 
� allows nested rewrite rules which can generate more
general types of nested sets� whereas inWOL we require that any set occuring
in an instance is identi	able by some means external to the elements of the set
itself� Recall that in the data�model presented here� a set occurs either as a
class or as part of the value associated with some object identity� Comparing
the expressive power of the two formalisms is di�cult because of the di�erence
between the underlying models� and because the expressive power of each
language depends on the predicates incorporated in the language� However
if the rewrite rules of 
� are extended to deal with the data�model presented
here� and both languages are adjusted to support equivalent predicates �for
example adding inequality and not�in tests to 
� and cardinality tests to
WOL� then WOL can be shown to be at least as expressive as the rules
of 
�� In particular� given the restrictions on types considered here� nested
rewrite rules do not give any increase in expressive power�


�� Syntax and semantics of WOL

We will assume some 	xed� keyed schema� �S�K� with classes C� and de	ne a
version ofWOL relative to this schema� We will write WOLSK when we wish
to be explicit that the language is parameterized on a particular schema�

Terms and Atoms For each base type b we will assume a countable set of
constant symbols ranged over by cb� � � �� and for each type � we will assume
a countably in	nite set of variables ranged over by X� � Y � � � � �� The terms



of WOLSK� ranged over by P�Q� � � �� are given by the abstract syntax�

P ��� C � class
j cb � constant symbol
j X � variable
j �aP � record projection
j insaP � variant insertion
j �P � dereferencing

j MkCP � object identity referencing

A term C represents the set of all object identities of class C� A term �aP
represents the a component of the term P � where P should be a term of record
type with a as one of its attributes� insaP represents a term of variant type
built out of the term P and the choice a� �P represents the value associated
with the term P � where P is a term representing an object identity� The term
MkCP represents the object identity of class C with key P �

We de	ne the typing relation �� on terms and types to be the smallest relation
satisfying the rules�

� C � fCg � cb � b

� X� � �
� P � �a� � ��� � � � � ak � �k�

� �aiP � �i

� P � �i
� insaiP � hja� � ��� � � � � ak � �kji

� P � C
��P � �C

� P � �C

� MkCP � C

A term P is said to be well�typed i� there is a type � such that � P � � �

Atomic formulae or atoms are the basic building blocks of formulae in our
language� An atom represents one simple statement about some values�

The atoms of WOLSF � ranged over by 	� 
� � � �� are de	ned by the abstract
syntax�

	 ��� P ��Q

j P �	�Q
j P ��Q

j P �	�Q
j False

The atoms P ��Q� P �	�Q� P ��Q and P �	�Q represent the obvious comparisons
between terms� False is an atom which is never satis	ed� and is used to rep�
resent inconsistent database states�



An atom 	 is said to be well�typed i�

�� 	 � P ��Q or 	 � P �	�Q and � � P � � � � � Q � � for some � � or
�� 	 � P ��Q or 	 � P �	�Q and � � P � � � � � Q � f�g for some � � or
�� 	 � False�

Intuitively an atom is well�typed i� that atom makes sense with respect to
the types of the terms occuring in the atom� For example� for an atom P ��Q�
it wouldn�t make sense to reason about the terms P and Q being equal unless
they were potentially of the same type�

Range restriction The concept of range�restriction is used to ensure that
every term in a collection of atoms is bound to some constant or value occur�
ring in a database instance� This is necessary to ensure that the truth of a
statement of our logic depends only on the instance and not the underlying
domains of the various types�

Suppose � is a set of atoms� and P is an occurrence of a term in �� Then P
is said to be range�restricted in � i� one of the following holds�

�� P � C where C � C is a class�
�� P � cb where cb is a constant symbol�
�� P � �aQ where Q is a range restricted occurrence of a term in ��
�� P occurs in a term Q � insaP � where Q is a range�restricted occurrence

of a term in ��
�� P � �Q where Q is a range�restricted occurrence of a term in ��
�� P occurs in an atom P ��Q or Q ��P or P ��Q in �� where Q is a range�

restricted occurrence of a term in ��
�� P � X� a variable� and there is a range�restricted occurrence of X in ��

Clauses A clause consists of two 	nite sets of atoms� the head and the
body of the clause� Suppose � � f	�� � � � � 	kg and  � f
�� � � � � 
lg� We
write


�� � � � � 
l �� 	�� � � � � 	k

or
 �� �

for the clause with head  and body �� Intuitively the meaning of a clause is
that if the conjunction of the atoms in the body holds then the conjunction
of the atoms in the head also holds�

For example� the clause

Y�state ��X �� X �� State� Y ��X�capital



means that� for every object identity X in the class State� if Y is the capital
of X then X is the state of Y �

A set of atoms � is said to be well�formed i� each atom in � is well�typed
and every term occurrence in � is range restricted in ��

A clause  �� � is said to be well�formed i� � is well�formed and � 
 
is well�formed�

Intuitively a clause is well�formed i� it makes sense� in that all the terms in
the clause range over values in a database instance� and all the types of terms
are compatible with the various predicates that are applied to them� All the
clauses we deal with in the remainder of this paper will be well�formed�

Semantics of WOL clauses An environment binds values to the variables
occuring in a WOL term� atom or clause� Suppose I is an instance� with
object�identi	ers �C � An I�environment� �� is a partial function with 	nite
domain on the set of variables such that ��X� � � 

� �C for each variable
X� � dom����

If I is an instance� � an I�environment and P a term of type � with variables
taken from dom���� then we de	ne a value 

P I� � 

� �C by structural
induction on P � We present some sample steps in the de	nition below� For
full details see 
���



XI� �

�
��X� if X � dom���
unde	ned otherwise



insaP I� � �a� 

P I��



�P I��

�
VC �

P I�� if 

P I� � �C for some C � C
unde	ned otherwise



MkC�P �I� �

��
�
o if 

P I� � 

�CI and o � �C

such that KC�o� � 

P I�
unde	ned otherwise

For any well�typed atom 	 with variables taken from dom��� we de	ne a
boolean value 

	�� For example 

P ��Q� � T i� 

P � � 

Q�� 

P ��Q� � T

i� 

P � � 

Q�� 

False� � F and so on�

The variables in the body of a clause are taken to be universally quanti	ed�
while any variables which occur only in the head of a clause are existentially
quanti	ed� Consequently a clause is said to be satis	ed by an instance i� for
any binding of the variables in the body of the clause which makes all the
atoms in the body true� there is an instantiation of any remaining variables
which makes all the atoms in the head true too�



Given a set of atoms �� we write Var��� for the set of variables occuring in
��

Suppose  �� � is a well�formed clause� An instance I is said to satisfy
 �� � i� for any I�environment � such that dom��� � Var��� and 

	� � T

for each 	 � �� there is an extension �� of � �that is� ���X� � ��X� for each
X � dom����� such that ���
� � T for each 
 �  �

Example � For the instance of the European Cities and States database
described in example �� suppose the environment � is given by�

� � �X �� UK� Y �� London�

Then



X ��Country
E
� � T



Y ��City
E
� � T



Y�country ��X� � T



Y�is capital ��tt� � T

Further we can check that� for any other binding of X to an element of
�CountryE which makes the 	rst atom true� there is a binding of Y to an
element of �CityE which makes the remaining three atoms true� Hence the
instance satis	es the clause

Y ��CityE � Y�country ��X� Y�is capital ��tt �� X ��CountryE


�� Expressing database transformations using WOL

So far we have de	ned the language WOL to deal with a single database
schema and instance� However in order to express transformations we need
to be able to write WOL clauses concerning multiple databases� In particular
we will need to write clauses involving one or more source databases and a
distinguished target database�

Partitioning schemas and instances If S�� � � � �Sn are schemas with dis�
joint sets of classes then we can de	ne S � S�
 � � �
Sn by taking the classes
of S to be the union of the classes of S�� � � � �Sn� and the type corresponding
to each class in S to be the same as the type corresponding to that class in
the relevant Si� S�� � � � �Sn are said to be a partition of S�

Given instances I�� � � � � In of disjoint schemas S�� � � � �Sn� we can form an
instance I � I� 
 � � � 
 In of S� 
 � � � 
 Sn by taking the unions of the



components of I�� � � � � In� Further given an instance I of S and a partition
S�� � � � �Sn of S� we can 	nd unique instances I�S�� � � � � I�Sn of S�� � � � �Sn
respectively� such that I � I�S� 
 � � �
 I�Sn�

Given disjoint keyed�schemas� �S��K��� � � � � �Sn�Kn�� we can form a keyed
schema �S�K� � �S��K�� 
 � � � 
 �Sn�Kn� in a similar manner �details may
be found in 
����

Transformation rules and constraints In looking at transformations we
will concentrate on the case where we have a schema �S�K� with partition
�SSrc�KSrc�� �STgt�KTgt�� and use the language WOLSK in order to de	ne
transformations from �SSrc�KSrc� to �STgt�KTgt��

A term occuring in a set of atoms � is classi	ed as a source term or a target
term depending on whether it refers to a value in the source database or the
target database� Note that it is possible for a term to be classi	ed as both a
source term and a target term�

For example� if CountryE is a class in our source schema� CountryT is a class
in our target schema� and � is the set of atoms

� � fX ��CountryE � X�name ��N� Y ��CountryT � Y�name ��Ng

then the terms X and X�name are source terms� the terms Y and Y�name
are target terms� and the term N is both a source and a target term�

There are three kinds of clauses that are relevant in determining transforma�
tions�

target constraints � containing no source terms�
source constraints � containing no target terms� and
transformation clauses � clauses of the form  �� � where each term

occuring in  is a target term� and  
 � contains no negative atoms
involving target terms �P �	�Q or P �	�Q�� and no comparisons of set�valued
target terms�

So a transformation clause is one which does not imply any constraints on
the source database� and which only implies the existence of certain objects
in the target database�

The restrictions against �negative� target atoms or comparisons of target sets
are necessary to allow us to apply transformation clauses while the target
database is only partially instantiated� and to ensure that any tests which
become true at some point during the implementation of a transformation
will remain true even if additional elements are added to the target database�
For example� suppose we allowed the following transformation clause

� � X�a�� X � C� Y � C� X�a � Y�a



where C is a class with corresponding type �C � �a � fintg�� Then suppose�
at some point during the transformation� we were to 	nd an instantiation of
X and Y to two objects� say o� and o�� of class C� such that the body of the
clause was true at that point in the transformation� Then the clause would
cause the constant � to be added to the set X�a� thus potentially making the
body of the clause no longer true�

Transformation programs A transformation program� Tr from a schema
�SSrc�KSrc� to a schema �STgt�KTgt� consists of a set of source and tar�
get constraints and transformation clauses in the language WOLSK� where
�S�K� � �SSrc�KSrc� 
 �STgt�KTgt��

Example ��� Let us consider the transformation from the schema of Euro�
pean Cities and Countries from example � to the schema illustrated in 	g�
ure �� We will assume that the key for the class Country

T
is its name at�

tribute� and the key for the class CityT is a record of type �name � str�
place name � str�� where the 	rst attribute is the name of a City� and the
second is the name of the Country or State pointed to by its place attribute�

Then we have the following source constraints�

Y ��City
E
� Y�country ��X� Y�is capital ��tt �� X ��Country

E

X ��Y �� X ��City
E
� Y ��City

E
� X�country ��Y�country�

X�is capital ��tt� �is capital ��tt

which state that every Country has a capital City� and that the capital City
of a Country is unique�

We also need target constraints describing how the keys for our classes are
generated�

Y ��MkCountryT �Y�name� �� Y ��Country
E

Y ��Mk
StateT �Y�name� �� Y ��StateE

X ��MkCityT �Z�� Z�name ��X�name� Z�place name ��Y�name
�� X ��CityT � Y ��CountryT � X�place ��inseuro�city�Y �

X ��MkCityT �Z�� Z�name ��X�name� Z�place name ��Y�name
�� X ��CityT � Y ��StateT � X�place ��insus�city�Y �



Our transformation clauses are�

Y ��City
T
� Y�name ��X�name� Y�place ��inseuro�city�Z�

�� X ��City
E
� Z ��Country

T
� Z�name ��X�country�name

Y ��Country
T
� Y�name ��Z�name� Y�currency ��Z�currency�

Y�language ��Z�language
�� Z ��Country

E

Y�capital ��Z �� Y ��Country
T
� Z ��City

T
� Z�place ��inseuro�city�Y ��

X ��City
T
� X�name ��Z�name� X�country�name ��Y�name�

X�is capital ��tt

The 	rst of the transformation clauses says that� for every object in the
source class CityE there is a corresponding object in the target class CityT
with the same value on its name attribute� and with its place attribute set to
an object in class CountryT with the same name as the name of the country
of the city in class CityE � The second clause says that� for every country in
the source class CountryE � there is a corresponding country with the same
name� currency and language� in the target class CountryT � and the third
clause tells us how to derive the capital attribute of an object in the class
Country

T
�

Note that� in the above example� a complete description of an object in
the target database may be spread over several transformation rules� and
that transformation rules may de	ne one target object in terms of other
target object� This highlights one of the strengths of WOL� it allows us to
split transformations over large and complicated data�structures with many
interdependencies into a number of small relatively simple rules�

The clauses of the transformation program above may however be unfolded
in order to give an equivalent program in which all the clauses give complete
descriptions of the target database in terms of the source database only� and
which can then be implemented in a simple manner 
���

Semantics of transformation programs Suppose Tr is a transformation
program� and ISrc an instance of �SSrc�KSrc�� An instance ITgt of �STgt�KTgt�
is said to be an Tr�transformation of ISrc i� for every clause  �� � in
Tr� I satis	es  �� �� where I � ISrc 
 ITgt�

Unfortunately the Tr�transformation of a particular instance will not in gen�
eral be unique� a transformation program will imply that certain things must
be included in the target database instance� but will not exclude other addi�
tional things from being included� Consequently there may be in	nitely many
Tr�transformations of a particular instance� representing the inclusion of ar�
bitrary additional data� It is therefore necessary to characterize the unique



smallest Tr�transformation of an instance� when it exists� To do this� we con�
struct a size ordering on instances� taking into account the fact that instances
may have di�erent sets of object identi	ers� We refer the reader to 
�� for
details�

A transformation program�Tr is then said to be complete i� for any instance
ISrc of �SSrc�KSrc�� if there is a Tr�transformation of ISrc� then there is a
unique �up to isomorphism� smallest such Tr�transformation ITgt�

Intuitively a complete transformation program is one in which the target
database instance is determined unambiguously by the source instance� In
particular� a transformation program is complete if� whenever it implies the
existence of some object in the target database� it provides a �complete�
description of that object� For example if the second transformation clause
of example �� was replaced by the clause

Y ��CountryT � Y�name ��Z�name �� Z ��CountryE

�and no additional clauses were added� then the program would no longer
be complete� This is because� for a suitable source instance� the above clause
would imply the inclusion of an object identity in the target CountryT class
with some speci	c value for the name attribute of the associated record�
but none of the clauses of the transformation program would assert what
the language and currency attributes of the associated record should be�
Consequently there would be many possible minimal instances of the target
database satisfying the program� all including objects of class CountryT with
the appropriate name attribute but with arbitrary values assigned to their
language and currency attributes�

Given a complete transformation program� the �unique smallest� transfor�
mation of an instance represents precisely the data whose presence in the
target database is implied by the transformation program� and is therefore
the transformation we are interested in�

Example ��� Consider transforming the instance described in example � tak�
ing Tr to be the transformation program of example ��� The choice of object
identities in our target database is arbitrary� We will take them to be�

�CityT � fLondon��Manchester��Paris��Berlin��Bonn�g

�CountryE � fUK��FR��GM�g

The mappings are then given by

VCityT �London�� � �name �� �London�� place �� �euro city�UK���

VCityE �Manchester�� � �name �� �Manchester�� place �� �euro city�UK���

VCityE �Paris�� � �name �� �Paris�� country �� �euro city�FR���



VCountryE �UK�� � �name �� �United Kingdom�� language �� �English��

currency �� �sterling�� capital �� London��

VCountryE �FR�� � �name �� �France�� language �� �French��

currency �� �franc�� capital �� Paris��

and so on�

This is the smallest instance which is a Tr�transformation of the instance of
example �� there are many other Tr�transformations which can be formed by
including additional objects to the instance� However any other minimal Tr�
transformation will be isomorphic to this one� Since we can always 	nd such a
smallestTr�transformation of an instance� if we can 	nd a Tr�transformation
at all� it follows that the transformation program is complete�

We therefore have a precise semantics for complete transformation programs�
Unfortunately it is not in general decidable whether a transformation pro�
gram is complete� However it is possible to construct fairly general syntactic
conditions which ensure that a transformation program is complete� For pro�
grams which meet these syntactic conditions� it is also possible to e�ciently
compute the unique smallest transformation of a set of source instances �see

�� for details�� We have prototyped such a system for a subset of WOL and
are currently testing it on a number of sample biological database transfor�
mations 
��

� Conclusions

There is a considerable need for database transformations in the areas of reim�
plementing legacy systems� reacting to schema evolutions� merging user views
and integrating existing heterogeneous databases� amongst others� Though
work exists to address certain aspects of these problems� a general formal
approach to specifying and implementing such complex structural transfor�
mations has not yet been completely developed� Many existing approaches
lack formal semantics� while others are limited in the types of transformations
that can be expressed� or in the data model being considered� In addition it is
frequently necessary to ensure the �correctness� of such database transforma�
tions� Notions of correctness or information preservation of transformations
should therefore be tied to database transformation techniques�

In this paper we surveyed various approaches to database transformations
and notions of information preservation� and reached a number of conclusions�
Firstly� approaches which allow a 	xed set of well�de	ned transformations to
be applied in series are inherently limited in the class of transformations



that can be expressed� As an example we demonstrated a complex struc�
tural manipulation which could not be expressed in one such methodology�
but which commonly arises in practice� Using a high�level language for ex�
pressing transformations can provide greater expressive power� but makes it
more di�cult to reason about and prove properties of transformations� We
concluded that a high�level language is necessary in order to express general
transformations� but that such a language should be declarative and should
have a well�de	ned formal semantics� in order to minimize the problems of
reasoning about transformations�

Secondly� the choice of an underlying data model impacts the types of trans�
formations that can be expressed� The main requirement of the model un�
derlying a transformation language is that it subsume the various models
which might be used in the databases being transformed� In particular� it
should include support for complex data�structures �sets� records and vari�
ants�� object�identity and recursive structures� To reason about transforming
recursive structures� it is also necessary to have a notion of extents or classes
in which all the objects in a database must occur�

Thirdly� to reason that a transformation is correct� constraints should be
expressed in the same formalism as the transformation� Constraints on the
source and target databases are crucial to notions of information preserva�
tion� but typically are not � or cannot � be expressed in the models of the
underlying databases� Furthermore� when integrating multiple heterogeneous
databases it is necessary to reason about inter�database constraints� Since
such constraints are crucial to the correctness of transformations they should
be expressed as part of the transformation program�

These conclusions have driven the design of the transformation language
WOL� As a declarative language built on Horn clause logic expressions� it
allows a general class of transformations to be expressed and uni	es the
treatment of transformations and constraints� The class of constraints that
can be expressed inWOL encompasses those found in most data models� such
as keys� functional dependencies and inclusion dependences� Furthermore�
our experience in using WOL to specify database transformations within
biological databases 
� indicates that it is intuitive and easy to use since
transformations over large and complicated data structures can be split into
a number of relatively small and simple rules� However� while the mechanics
for checking information preservation appear to be in place for WOL we
feel that more general� problem speci	c notions of correctness need to be
developed as well as sound techniques for proving these properties�
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